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Σήμερα 
● Πυρηνικό μοντέλο των φλοιών – εκτίμηση βάθους 

δυναμικού, ενεργειακών σταθμών και μαγικών αριθμών

– Βιβλίο C&G, Παράρτημα Β, Κεφ. 5, 5.1-5.7

– Βιβλίο Χ. Ελευθεριάδη: κεφ. 6, παρ 6.3, 6.4

– Σημειώσεις Πυρηνικής, Κεφ. 8

● Χαρακτηριστικά πυρήνων πέρα από το μέγεθος και τη 
μάζα: σπιν (spin), ομοτιμία (parity), μαγνητική ροπή, 
ηλεκτρική τετραπολική ροπή

– Βιβλίο C&G, Παράρτημα Γ  , παρ. 1.3, Κεφ. 5, παρ. 5.5-5.7

– Σημειώσεις Πυρηνικής, Κεφ. 1, σελ. 4-5 (μαγνητική ροπή)

● Ιστοσελίδα: http://www.physics.auth.gr/course/show/125 

http://www.physics.auth.gr/course/show/125
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Πυρήνες με δέσμια νουκλεόνια - τα 
πρωτόνια και τα νετρόνια σε  

διαφορτετικά πηγάδια δυναμικού 

Ενέργεια Fermi και βάθος πηγαδιών 

Δέσμιο σύστημα φερμιονίων σε πηγάδι 
δυναμικού → υπάρχουν ενεργειακές στάθμες που 
συμπληρώνονται από το βάθος του πηγαδιού και 

πρός τα πάνω, μέχρι μια ενέργεια που τη λέμε 
Ενέργεια Fermi (Ε

F
)
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Διαφορετικά πηγάδια p, n
νετρόνια πρωτόνια

Δυναμικό 
Coulomb,όταν 
έξω απ'τον 
πυρήνα

Δυναμικό 
Coulomb και 
ενέργεια 
ασσυμετρίας 
(Ν-Ζ),όταν 
μέσα στον 
πυρήνα → 
υπερυψώνει 
το πηγάδι 
πρωτονίων
κατά U

Σχήμα 5.1 και εξίσωση 
5.1 του βιβλίου σας
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Διαφορετικά πηγάδια p, n
Δέσμιο σύστημα φερμιονίων σε πηγάδι δυναμικού → 

ενεργειακές στάθμες, συμπληρωμένες από το βάθος του 
πηγαδιού και πρός τα πάνω, μέχρι μια ενέργεια που τη λέμε 

Ενέργεια Fermi (Ε
F
)

Δυναμικό 
Coulomb,όταν 
έξω απ'τον 
πυρήνα

νετρόνια πρωτόνια

Ενέργεια σύνδεσης του τελευταίου νουκλεονίου = 
                              = Ενέργεια διαχωρισμού του = Sn(N,Z)
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Πυκνότητα καταστάσεων σε κουτί
● Παράρτημα Β βιβλίου σας C&G, πυκνότητα 

καταστάσεων , σε κυβικό κιβώτιο (και σε 
σκεδαζόμενο σύστημα). L


2

2m
∇2ψ + V x, y, z( )ψ = Εψ

V x, y, z( ) =
0 εντος
∞ εκτος

⎧
⎨
⎪

⎩⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

⇒

ψ x, y, z( ) = const.⋅sin kx x( ) ⋅sin kyy( ) ⋅sin kzz( )

kx =
nxπ
L

, ky =
nyπ
L

, kz =
nzπ
L

, nx ,nx ,nx = 1,2, 3...

k2 = kx
2 + ky

2 + kz
2( )

E =
h2

2m
kx

2 + ky
2 + kz

2( ) =
h2

2m
k2

 

Για κάθε Ε αντιστοιχεί ένα και μόνο ένα k
Για κάθε k αντιστοιχούν πολλά nx, ny, nz (δηλαδή πολλές καταστάσεις)
Πόσες καταστάσεις υπάρχουν για Ε≤Εο ή αντίστοιχα για k≤ko ;;;

Σημείωση: τα n
x
, n

y
,n

z 
είναι

   θετικά, και τα kx, ky, kz επίσης

y
x

z

Στάσιμο κύμε σε κουτί:                       
               ημίτονα και συνημίτονα
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Αριθμός & Πυκνότητα καταστάσεων σε κουτί
● Χώρος φάσεων: οι άξονες είναι οι ορμές Px, 

Py, Pz ή (ισοδύναμα) οι κυματάριθμοι kx, ky, kz
1. kx,ky,kz>0. Για:

4.  Οπότε, αριθμός καταστάσεων με k< k
0
 :

oι καταστάσεις είναι 
σε  όγκο:

2. Αριθμός καταστάσεων N
o
 με k<k

0

3. Σωματίδιο σε καθορισμένη κατάσταση (n
x
, n

y
, n

z
)

και οποιονδήποτε προσανατολισμό spin, 
έχει ενέργεια:

Aριθμός διακριτών σημείων (kx,ky,kz)  με k<k
0 
= 

(όγκος στο χώρο των φάσεων) x 
(πυκνότητα σημείων στο πλέγμα των καταστάσεων)

Οι καταστάσεις επί 2 επειδή μπορούμε να έχουμε 
2 προσανατολισμούς σπιν σε κάθε (kx,ky,kz)kx,ky,kz>0

οπότε 1/8 
της σφαίρας
ακτίνας kο
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Ενέργεια Fermi για το πηγάδι νετρονίων και 
πρωτονίων στον πυρήνα

Sn

●Από την ενέργεια Fermi μέχρι Ε=0, μένει η 
ενέργεια  διαχωρισμού Sn(N,Z) ενός 
νετρονίου από έναν πυρηνα:  
        Sn(N,Z) = B(N,Z) – B(N-1,Z) 
που είναι της τάξης της ενέργειας 

σύνδεσης ανά νουκλεόνιο: ~ 8 MeV
● Οπότε, το βάθος δυναμικού νετρονίων 
είναι: ~ 38 + 8 ΜeV ~ 46 MeV

Όγκος πυρήνα
που έχει ακτίνα R

Οπότε,  αριθμός Ν των καταστάσεων 
που μπορούν να καταλάβουν τα νετρόνια
και τα πρωτόνια:

Ε
n

F , Ε
p

F είναι οι ενέργειες Fermi για το πηγάδι των νετρονίων και των πρωτονίων

Και η κινητικές ενέργειές τους είναι                           αντίστοιχαΕn
Fκαι Ep

F
−Ū

● Για Ν=Ζ θα πρέπει Ν/V να είναι το μισό της πυκνότητας πυρηνικής 
ύλης (~0.085 fm-3 ) → Οπότε: Ε

n
F ~38MeV

Τα πρωτόνια έχουν επιπλέον και το φράγμα Coulomb
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Πυρηνικό Πρότυπο Φλοιών  - 
εξίσωση Schroedinger 
(ανάλογα με  τα άτομα)
με πηγάδι δυναμικού
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Αναζητούμε πεπερασμένες λύσεις 
για r=0 και μηδέν για μεγαλύτερο ή 
ίσο της πυρηνικής ακτίνας R

Για l=0, συμβατές με r=0 είναι οι λύσεις:

●Για r=R: u(R)=0 → sin(x)/x = 0
x=kR

x

sin(x)/x

Mε k = x/R, 
βρίσκουμε τις 
επιτρεπτές  τιμές 
ενέργειας

Τι τιμές 
παίρνει 
το k ;

Εξίσωση Schroedinger μέσα στον πυρήνα (V=0)

π
= x

1s

2π
= x

2s

3π
= x

3s

4π
= x

4s

Οι ενέργειες 
είναι 

κβαντισμένες!
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  xnp = knR

ωστε up R( ) =
sin xnp( )

xnp( )
2 −

cos xnp( )

xnp( )
= 0

Για l=1, συμβατές με r=0 είναι οι λύσεις (μπορείτε να το επιβεβώσετε):

●Για r=R: u(R)=0

x
4.49
= x

1p

7.73
= x

2p

10.90
= x

3p

14.07
= x

4p

Mε k = x/R, 
βρίσκουμε τις 
επιτρεπτές 
τιμές 
ενέργειας

1

2

Ίδια
σχέση
με πρίν. 
Τι τιμές 
παίρνει 
το k ;

Οι ενέργειες 
είναι 

κβαντισμένες!
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  xnp = knR

ωστε up R( ) =
sin xnp( )

xnp( )
2 −

cos xnp( )

xnp( )
= 0

Για l=1, συμβατές με r=0 είναι οι λύσεις (μπορείτε να το επιβεβώσετε):

●Για r=R: u(R)=0

x
4.49
= x

1p

7.73
= x

2p

10.90
= x

3p

14.07
= x

4p

Mε k = x/R, 
βρίσκουμε τις 
επιτρεπτές 
τιμές 
ενέργειας

1

2

Ίδια
σχέση
με πρίν. 
Τι τιμές 
παίρνει 
το k ;

Γενικά, για κάθε τιμή “l”  της 
στροφορμής, υπάρχει μια άλλη 
συνάρτηση  (= ”σφαιρική συνάρτηση
Bessel   j

l
(kr) “ ) που ινακοποιεί την 

εξίσωση Schroedinger , και που έχει 
μηδενικά σε διάφορες τιμές x= kR
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Ακολουθία ενεργειακών σταθμών σε σφαιρικό 
πηγάδι με άπειρου ύψους τοιχώματα

Όσο μεγαλύτερο το x
nl

τόσο μεγαλύτερη η 
ενέργεια της στάθμης

Οπότε, για κάθε τιμή 
της στροφορμής “l”
έχουμε ένα πλήθος 
λύσεων που τις
ονομάζουμε 
n=1, n=2, n=3, … 
και άρα έχουμε μια 
ακολουθία
επιτρεπτών
ενεργειών: 

Enl=
ℏ

2

2mn

(
xnl

R
)
2

l=0
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Ακολουθία ενεργειακών σταθμών σε σφαιρικό 
πηγάδι με τοιχώματα απείρου ύψους

Οπότε, για κάθε τιμή 
της στροφορμής “l”
έχουμε ένα πλήθος 
λύσεων που τις
ονομάζουμε 
n=1, n=2, n=3, … 
και άρα έχουμε μια 
ακολουθία
επιτρεπτων
ενεργειών: 

Enl=
ℏ

2

2mn

(
xnl

R
)
2

l=0

l=1

Όσο μεγαλύτερο το x
nl

τόσο μεγαλύτερη η 
ενέργεια της στάθμης
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Ακολουθία ενεργειακών σταθμών σε σφαιρικό 
πηγάδι με τοιχώματα απείρου ύψους

Οπότε, για κάθε τιμή 
της στροφορμής “l”
έχουμε ένα πλήθος 
λύσεων που τις
ονομάζουμε 
n=1, n=2, n=3, … 
και άρα έχουμε μια 
ακολουθία
επιτρεπτων
ενεργειών: 

l=0

l=1

● Για κάθε ζεύγος (n,l) 
έχουμε 2*(2*l+1) 
εκφυλισμένες καταστάσεις  
(προσέξτε τον έξτρα 
παράγοντα 2 λόγω σπιν 1/2)
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Αριθμός καταστάσεων μέχρι κάποια ενέργεια, δηλ, 
μέχρι κάποια τιμή του x

nl

● Για κάθε ζεύγος (n,l) 
έχουμε 2*(2*l+1) 
εκφυλισμένες καταστάσεις  
(προσέξτε τον έξτρα 
παράγοντα 2 λόγω σπιν 1/2)

Enl=
ℏ

2

2mn

(
xnl

R
)
2

1

2
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Πυρηνικό Πρότυπο Φλοιών  - 
εξίσωση Schroedinger 
(ανάλογα με  τα άτομα)

με πηγάδι δυναμικού και 
με όρο για σύζευξη spin-orbit (L.S)
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Υπάρχει όμως και όρος L*S στη δυναμική ενέργεια 
Από το απλό πηγάδι δυναμικού περιμέναμε: 
Όμως, στον πίνακα πρίν είδαμε τις 
περισσότερες ενεργειακές στάθμες (n,l) να έχουν υποστάθμες:
Υπάρχει κι άλλος σημαντικός κβαντικός αριθμός. Ποιός είναι;

Εκτός από το κεντρικό δυναμικό  (συνάρτηση της απόστασης
r μόνο) υπάρχει και όρος με σύζευξη L*S στη Χαμιλτονιανή: 
                                                                       (L= τροχιακή στροφορμή, 
                                                                                                S= spin)

→ Καλοί κβαντικοί αριθμοί: l, s, j, m
j
    

      όπου “j”  o κβαντικός αριθμός της ολικής στροφορμής  J, 
      και  m

j
 o κβαντικός αριθμός gia την προβολη της J στον άξονα z.

H ολική στροφορμή είναι άθροισμα των l και s. 
Αφού τα νουκλεόνια είναι φερμιόνια (s=1/2), έχουμε: 
j= l+1/2 ή j = l-1/2.
Για κάθε j, τo m

j
 μπορεί να είναι {-j, -j+1, …, j-1, j} : 2j+1 πιθανές τιμές

Οπότε:  
 για j=l+1/2 : 2(l+1/2)+1 = 2l+2 τιμές, για j=l-1/2: 2(l-1/2)+1 = 2l τιμές

Συνεισφορά στην ενέργεια (με U
SO

 < 0) :

Enl=
ℏ2

2mn

(
xnl

R
)
2
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Αλληλεπίδραση L*S : διαχωρισμός καταστάσεων με το 
ίδιο (n,l), αλλά διαφορετική ολική στροφορμή j

● Ο όρος σύζευξης L. S ξεχωρίζει τις καταστάσεις με ίδιο {n, 
l  } , αλλά διαφορετικούς προσανατολισμούς του σπιν ως προς L

Συνεισφορά στην ενέργεια (με U
SO

 < 0) :

Επειδή βλέπουμε (π.χ., στον πίνακα πρίν) οι j= l + ½ να έχουν μικρότερη ενέργεια 
από τις j=l – ½  , δηλαδή:

Συμπεραίνουμε ότι: U
SO

 < 0   .          

Σημειώστε επίσης ότι: ΔΕ(j=1 – ½ , j=1 + ½ ) = |Uso| * ½ * hbar * (2l+1), αρκετή 
για να αλλάζει τη σειρά στις στάθμες, ειδικά στα μεγάλα l, οπως είδαμε στον 
πίνακα 5.1.

[U SO
1
2

l ℏ2
]<[−U SO

1
2

(l+1)ℏ
2
]

Η αναμενόμενη τιμή του L*S μπορεί να βρεθεί από την ταυτότητα:

Οπότε:
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● Ο όρος σύζευξης L. S 
ξεχωρίζει τις 
καταστάσεις με το ίδιο 
(n,l), αλλά διαφορετική 
ολική στροφορμή j

● Π.χ. 1p → l=1 →  

→ [2*(2*1+1)= 6 κατ.

● 1p με j=1+1/2 = 3/2  και 1p 
με j=1-1/2 = ½

● 1p
3/2

 : 4 καταστάσεις (mj=-

3/2, -½ , ½ , 3/2) 

● 1p
1/2

 : 2 kαταστάσεις (mj= 

-1/2 , 1/2)

Αλληλεπίδραση L*S : διαχωρισμός καταστάσεων με το 
ίδιο (n,l), αλλά διαφορετική ολική στροφορμή j

● Στάθμες με ίδιο n,l: 
Αυτός με τη μικρότερη 
ολική στροφορμή (j=l-
1/2) έχει μεγαλύτερη 
ενέργεια
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→ Καλοί κβαντικοί αριθμοί:
 l, s, j, mj

● Στάθμες με ίδιο n,l:

Αυτός με τη μικρότερη 
ολική στροφορμή (j=l-
1/2) έχει μεγαλύτερη 
ενέργεια

Συμπληρωμένοι φλοιοί και μαγικοί αριθμοί

Συμπληρωμένοι  φλοιοί

και 

“Μαγικοί” αριθμοί
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Ανακάτεμα των ενεργειακών σταθμών και 
“χάσμα” σε μερικές περιοχές : μαγικοί αριθμοί

● Ο όρος σύζευξης L. S ξεχωρίζει τις καταστάσεις με το ίδιο (n,l), 
αλλά διαφορετική ολική στροφορμή j

Συμπληρωμένοι  φλοιοί

Συνεισφορά στην ενέργεια (με U
SO

 < 0) :

“Μαγικοί” αριθμοί
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Ν

Ζ

Πυρήνες με “μαγικούς” αριθμούς - οι 
σταθερότεροι

 Ζ < Α/2

Πυρήνες με “μαγικούς” 
αριθμούς:

Πολύ σταθεροί σε σχέση με τους 
γειτονές τους (με πολλά 
σταθερά ισότοπα, μικρή ενεργός 
διατομή σύλληψης νετρονίου)
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Πυρηνικό Πρότυπο Φλοιών  : 

Εξήγηση της ολικής στροφορμής  J 
του πυρήνα (= του σπίν του)

και της ομοτιμίας του (παριτυ)
με απλούς κανόνες
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Spin πυρήνα (J) και ομοτιμία (πάριτυ)
● Σπιν πυρήνα, J = ολικό τροχιακό σπίν των νουκλεονίων + το 

άθροισμα των σπιν τους.

● To ολικό σπίν (J) άρτιων-άρτιων πυρήνων έχει βρεθεί ότι έιναι 0

και η πάριτυ + : Jπ = 0+

→ άρα, υπάρχει ισχυρό ζευγάρωμα των σπιν που δίνει άθροισμα 0 

● Για περιττό αριθμό νουκλεονίων, το ασύζευκτο νουκλεόνιο 
καθορίζει σπίν και parity του πυρήνα 

π.χ., 17
8
Ο :  Jπ = 5/2 +   ,σελ. 87 βιβλίου σας. Parity = (-1)l

● Για περιττούς-περιττούς πυρήνες, το κάθε αζευγάρωτο πρωτόνιο και νετρόνιο 
συνεισφέρουν το δικό τους Jπ . Το ολικό σπίν είναι το άθροισμα των επι 
μέρους σπίν σύμφωνα με τους κανόνες άθροισης σπιν, αλλά αν έχουμε πολλες 
επιλογές δεν έχουμε κάποιον γενικό κανόνα για το ποιό αποτέλεσμα 
προτιμάται. Η ολική πάρτυ έιναι το γινόμενο των επι μέρους πάριτυ.

J⃗ πυρήνα≡∑νουκλεόνια
L⃗+∑νουκλεόνια

S⃗=∑νουκλεόνια
( L⃗+ S⃗)

Κ
Α

Ν
Ο

Ν
Α

Σ
 π

ο
υ
 δ

ο
υ
λ
εύ

ει
 σ

τ
α
 π

ερ
ι σ

σ
ό
τ
ερ

α
!
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Παράδειγμα - Εξηγείστε τα Jπ του πίνακα 
4.2, με τον πίνακα 5.1 του βιβλίου σας

● π.χ., 17

8
Ο : α) τα 8 πρωτόνια συνεισφέρουν  Jπ = 0+  β) από τα 9 νετρόνια, 

τα 8 συνεισφέρουν  Jπ = 0+  ,  κι έτσι το ένατο (το αζευγάρωτο) 
καθορίζει το  Jπ . Όμως, το ένατο νετρόνιο είναι στον φλοιό 1d

5/2
  :  το d 

μας λέει ότι l=2 → παριτυ = (-1)^l = (-1)^2 = +1  και το 5/2 μας λέει ότι 
j=5/2, οπότε αυτό το ασύζευκτο νετρόνιο δίνει:   Jπ = 5/2 +    για το 17

8
Ο
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Spin πυρήνα (J) και μαγνητική ροπή (μ)
● Σπιν πυρήνα, J = ολικό τροχιακό σπίν των νουκλεονίων + το 

άθροισμα των σπιν τους.

● Κι έτσι καθορίζει τη μαγνητική ροπή του, μ

– Ενεργειακές διαφορες που αντανακλoύν τα mj. 

– Μετράμε τις ενεργειακές διαφορές, δηλ το μ,  με πυρηνικό 
μαγνητικό συντονισμό: παλλόμενο Η/Μ πεδίο κυκλικής 
συχνότητας ω

J πυρήνα≡∑νουκλεόνια
L∑νουκλεόνια

S=∑νουκλεόνια
LS 

U=− μ⃗⋅B⃗=−μz B

μ≡
μ
j ℏ

J μ z=
μ
j ℏ

m j

μ j=k1

μ j=k

ℏω=
μ
j ℏ
Β

οπότε U=−
μ
j ℏ

m jΒ=−(
μ
j ℏ
Β)m j
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Spin πυρήνα (J) και μαγνητική ροπή (μ)

● Oι πυρήνες έχουν μαγνητικές ροπές μ  ~ -3 μ
N  

 έως 10 μ
N

– Μικρή σε σχέση με τον αριθμό νουκλεονίων (που το 
καθένα συνεισφέρει ~ -2 μ

N 
έως +3  μ

N 
) 

● Ταιριάζει με την υπόθεση ότι ουσιαστικά μόνο τα 
“ασύζευκτα” νουκελόνια συνεισφέρουν

– Μικρή σε σχέση με μαγνητόνη Bohr

● Μάλλον δεν έχουμε ηλεκτρόνια στους πυρήνες

Γιατί: 

μ Β≡
e ℏ

2 m e c
Μαγνητόνη του Bohr, μ

Β 
 :

μΝ≡
eℏ

2 m p c
Πυρηνική Μαγνητόνη, μ

Ν 
 :

μΒ≃2000 μ N

!
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Spin νουκελονίων και μαγνητική ροπή
● Κάθε νουκλεόνιο, εδώ πρωτόνιο, έχει μαγνητική 

διπολική ροπή:

● Πρωτόνιο έχει σπιν {+1/2, -1/2}, όπως και τα νετρόνια. 
Κι έτσι έχει μαγνητική ροπή λόγω σπιν, ίση με :

μ p=gs

q
2 m p c

S=gs

e
2 m p c

S=gs μN

S
ℏ

μ p , z=gs μ N ms U p=−gs μ N m s B

όπου : μ N≡
e ℏ

2 m p c

μ p=gs μN s  s1

μ p≃5.59 μ N

μn≃−3.83 μ N
Πυρηνική μαγνητόνη ~ 2000 
μικρότερη της μαγνητόνης του 
Bohr μ

B
 (που ορίζεται για τη 

μάζα ηλεκτρονίου)

gs≠2 όχι στοιχειώδες

m
s
 = ½ ή - ½  = 2 επι μέρους ενεργειακές στάθμες 

μ p= μ L μs=gL

q
2 m p c

Lgs

q
2m p c

S=gL

μΝ
ℏ

Lgs

μ N

ℏ
S
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Mαγνητική ροπή πυρήνα = μαγνητική ροπή 
ασύζευκτου νουκλεονίου

● Κάθε νουκλεόνιο έχει μαγνητική διπολική ροπή:

● Για να πάρουμε υπόψιν μας το ότι το νετρόνιο δεν έχει 
φορτίο, γράφουμε για τη μαγνητική ροπή λόγω L: 
Πρωτόνιο: g

L
 = 1 , νετρόνιο: g

L
 = 0

● … 

μ N= μ L μs=gL

q
2 m p c

Lgs

q
2 m p c

S=gL

μΝ
ℏ

Lgs

μ N

ℏ
S=μΝ [gL

Lgs
S ]

Οι μετρούμενες τιμές είναι κοντά σ' αυτές τις τιμές που
βρήκαμε παίρνοντας συνεισφορά μόνο από το ασύζευκτο νουκλεόνιο

Αuτές εδώ ονομάζονται “τιμές Schmidt”
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Ηλεκτρική τετραπολική ροπή πυρήνα, Q
● Κατανομή ηλεκτρικού φορτίου στον πυρήνα → 

χαρακτηρίζεται από το Q

● Όταν πυρήνας σφαιρικός → Q = 0

● Αλλιώς 

– Q>0 όταν επιμήκυνση κατά άξονα z

– Q<0 όταν συμπίεση κατά άξονα z

● Όταν j=0 ή j= ½ → Q = 0 

Οχι προς εξέταση
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Ηλεκτρική τετραπολική ροπή πυρήνα, Q
Οχι προς εξέταση
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