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Υπενθύμιση: 

κινηματική και μονάδες (τα έχουμε 
κάνει εκτενώς στην αρχή του 

μαθήματος)
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Σχετικιστική κινηματική

E2
= pc2

m c2

2

γενικά , με κινητική ενέργεια  Κ , έχουμε : E=Κ m c2

E=m γ c2
, όπου  γ =

1

1− β2
, και β= υ /c ,με υ=ταχύτητα σωματιδίου

p=m γ υ =m γ β c , όπου p=ορμή

Σχετικιστική κινηματική:

ενέργεια
μάζα c = ταχύτητα του φωτός

E = mc2  = η ενέργεια πού έχω επειδή 
                         απλά και μόνο έχω μάζα m

Η μάζα είναι μια 
μορφή ενέργειας

Όσον αφορά τις μονάδες:
[E] = MeV, και από τους τύπους 
βλέπουμε ότι για τις μονάδες της 
ορμής έχουμε: [pc] = [E] 
    → [pc] = MeV → [p] = MeV/c
* Για τις μονάδες μάζας έχουμε: 
            [Ε] = [mc2] →   [mc2] = MeV 
                          → [m] = MeV/c2

Σημείωση: με c = 1, γράφουμε : E 2 =p2 +m 2 ,κλπ.

Χρήσιμα : β=
pc
E

και βγ=
p

mc
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Μονάδες (1)

ℏ c=197 MeV fm, όπου ℏ=
h

2π
≡μονάδα δράσης  ενέργειας ×χρόνου ≡1

c= 3×10 8 m / s ≡ μο ν ά δ α  τ α χ ύ τ η τ α ς≡ 1

μονάδα ενέργειας ≡eV=1.6∗10−19Cb∗V=1.6∗10−19 Joule
Συνήθως χρησιμοποιούμε το MeV (= 109 eV)

Σταθερά του Plank = h = 6.626 x 10-3 4 J s

Προσοχή: 
αν γράφουμε στον τύπο της δύναμης Coulomb και της δυναμικής ενέργειας τον 
παράγοντα 1/4πε

0
 , σημαίνει ότι χρησιμοποιούμε το Διεθνές Σύστημα μονάδων 

(S.I = mks) , οπότε το φορτίο “e” είναι σε Coulomb και: 

Αν όμως γράφουμε τον τύπο της δύναμης Coulomb και της αντίστοιχης δυναμικής
ενέργειας έχοντας θέσει  1/4πε

0
 = 1 , αυτό σημαίνει ότι χρησιμοποιούμε το σύστημα 

μονάδων cgs  , οπότε το φορτίο “e” είναι σε esu και: 

Θα χρησιμοποιούμε παντού: 
eV για ενέργεια (ή MeV στην πυρηνική), 
1/4πε

0
 = 1 σε όλους τους τύπους,

και θα βάζουμε:

α=
e2

4 πε 0 ℏ c
[mks ]=

e2

ℏc
[cgs ]=

1

137

e2
=αℏ c , όπου α=1/137

α = η σταθερά λεπής υφής = 1/137
(αδιάστατο μέγεθος και άρα ίδια τιμή σε 
όλα τα συστήματα μονάδων) ℏ c=197 MeV fm

e2
=αℏ c , όπου α=1/137

e2
=4 π ε 0 α ℏ c ,όπου α=1/137
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Μονάδες (2)

ℏ c=197 MeV fm, όπου ℏ=
h

2π
≡μονάδα δράσης  ενέργειας ×χρόνου ≡1

c= 3×10 8 m / s ≡ μο ν ά δ α  τ α χ ύ τ η τ α ς≡ 1

μονάδα ενέργειας ≡eV=1.6∗10−19Cb∗V=1.6∗10−19 Joule
Συνήθως χρησιμοποιούμε το MeV (= 109 eV)

Σταθερά του Plank = h = 6.626 x 10-3 4 J s

Μετράμε:
Μάζα: MeV/c2  (αφού Ε = mc2)
Ορμή: MeV/c (αφού p = mγβc)
Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1)
Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1)

1 amu = 1/12 μάζας ουδέτρου ατόμου 12C = 931.5 MeV/c2

Mάζα ηλεκτρονίου = 0.511 MeV/c2

Μάζα πρωτονίου = 938.3 MeV/c2,  Μάζα νετρονίου  = 939.6 MeV/c2

Θα χρησιμοποιούμε παντού: 
eV για ενέργεια (ή MeV στην πυρηνική), 
1/4πε

0
 = 1 σε όλους τους τύπους,

και θα βάζουμε:

α=
e2

4 πε 0 ℏ c
[mks ]=

e2

ℏc
[cgs ]=

1
137

e2
=αℏ c , όπου α=1/137

α = η σταθερά λεπής υφής = 1/137

ℏ c=197 MeV fm
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Μονάδες – Παραδείγματα (1)

ℏ c=197 MeV fm, όπου ℏ=
h

2π
≡μονάδα δράσης  ενέργειας ×χρόνου ≡1

c= 3×10 8 m / s ≡ μο ν ά δ α  τ α χ ύ τ η τ α ς≡ 1

Αν σε όλους τους υπολογισμούς βάζουμε ενέργειες σε MeV, 
και  επίσης βάζουμε hbar =1 και c=1,
τότε ό,τι και να βρούμε (μήκος, χρόνος, ορμή, κλπ.) θα το βρούμε σε MeV
Και μετά πρέπει να το μετατρέψουμε σε χρόνο (sec), μήκος (m), κλπ.
Παράδειγμα Α: Ας υποθέσουμε ότι υπολογίσαμε κάποιο μήκος κύματος λ , και 
έχοντας βάλει hbar=c=1 στους τύπους, βρήκαμε λ = 3*106 / ΜeV → λ = 3*106 MeV-1 
και θέλουμε να δώσουμε το λ σε μέτρα που είναι και οι μονάδες μηκους στο 
Διεθνές Σύστημα (S.I) μονάδων.
 * Γνωρίζοντας ότι hbar * c = 197 MeV * fm, και ότι έχουμε βάλει τόση ώρα παντού
hbar=1 kai c=1, οπότε και hbar*c = 1, έχουμε ουσιαστικά χρησιμοποιήσει τη σχέση
197 MeV * fm = 1, οπότε 197 ΜeV = 1 fm-1 , και 1 MeV-1 = 197 fm , οπότε: 
 λ =3*106 MeV-1 = 3*106 * 197 fm = 591 * 106 * 10-15 m = 591 * 10-9 m → λ = 591 nm

Παράδειγμα Β: Aν είχαμε υπολογίσει κάποιoν χρόνο  τ = 1 MeV-1 και θέλαμε να τον 
δώσουμε σε seconds, τότε: επειδή ξέρουμε ότι c= 3*108 m/s , και έχουμε βάλει c=1 
→  3*108 m/s = 1 → 1 m = (1/3) * 10-8 s 
Οπότε, ξέροντας από το hbar*c=1 ότι:  1 MeV-1 = 197 fm = 197 * 10-15 m , 
έχουμε επίσης ότι: 1 MeV-1 = 197 * 10-15 *(1/3) * 10-8 s = 65.7 * 10-23 s
** οπότε τ =  1 MeV-1 → τ = 65.7 * 10-23 s 

c= 3×10 8 m / s ≡ μο ν ά δ α  τ α χ ύ τ η τ α ς≡ 1
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Μονάδες – Παραδείγματα (2)

ℏ c=197 MeV fm, όπου ℏ=
h

2π
≡μονάδα δράσης  ενέργειας ×χρόνου ≡1

c= 3×10 8 m / s ≡ μο ν ά δ α  τ α χ ύ τ η τ α ς≡ 1

Αν σε όλους τους υπολογισμούς βάζουμε ενέργειες σε MeV, 
και  επίσης βάζουμε hbar =1 και c=1, τότε ό,τι και να υπολογίζουμε 
(μήκος, χρόνος, ορμή, κλπ.) θα είναι σε MeV γιατί θα υπάρχουν 
“αόρατοι” παράγοντες hbar και c τα οποία τα έχουμε βάλει = 1

! Για να το μετρέψουμε στις κανονικές μονάδες μήκους, χρόνου, κλπ
    απλά πολλαπλασιάζουμε το αποτέλεσμα των MeV που βρήκαμε,  με το 
    σωστό συνσδυασμό hbar και c ώστε να φτιάξουμε τις σωστές μονάδες,
    και μετά αντικαθιστούμε hbar * c = 197 MeV * fm και c = 3*108  m/s
→ Έτσι φτάνουμε πιό γρήγορα  στo αποτέλεσμα: 
Παράδειγμα Α: Ας υποθέσουμε ότι υπολογίσαμε ένα μήκος κύματος λ = 3*106 MeV-1 
και θέλουμε να δώσουμε το λ σε μέτρα, τότε: 
 λ =3*106 MeV-1 = 3*106 MeV-1 * hbar c  =  3*106 MeV-1 *  197 MeV * fm = 591 nm
Παράδειγμα Β: Aν είχαμε υπολογίσει κάποιoν χρόνο  τ = 1 MeV-1 και θέλαμε να τον 
δώσουμε σε seconds, τότε: 
τ = 1 MeV-1 = 1 MeV-1 * hbar c / c = 1 MeV-1 * 197 MeV * fm / (3*108  m/s) =  
    = 65.7 * 10-23 s

c= 3×10 8 m / s ≡ μο ν ά δ α  τ α χ ύ τ η τ α ς≡ 1
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Μονάδες

• Οι ταχύτητες που συναντάμε στη φυσική των σωματιδίων είναι κοντά στο c. 

• Οι στροφορμές, δράσεις, γενικά το γινόμενο xp ~ ħ ή Et ~  ħ

• Φυσικές διαστάσεις είναι το c και το ħ.

– Είναι βολικό ένα σύστημα μονάδων όπου c = ħ =1 

• Μ=Ε/c2      [E] ,  

• L=ħc/E      [E- 1]

• T= ħ/E      [E- 1], 

α=
e2

4π ℏ c
=

1
137

ℏ c=197 MeV fm,όπου: ℏ=
h

2π
≡μονάδα δράσης  ενέργειας× χρόνου ≡1

c= 3×108 m /s≡μονάδα ταχύτητας≡1
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Μονάδες

E GeV 1GeV = 1.6 10-1 9 J

P GeV

M GeV 1kg = 5.61 102 6 GeV

length 1/GeV 1m = 5.07 101 5  GeV- 1

time 1/GeV-1 1sec = 1.52 102 4  GeV- 1

J dimensionless

Q dimensionless

Quantity         N.U.                 Conv. Factor to SI 
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Μονάδες

Αυτό μας επιτρέπει
• Να εκφράζουμε όλα τα φυσικά μεγέθη σε μονάδες ενέργειας: 

απόσταση είναι [Ε]-1. Ορμή είναι [Ε]. Κοκ.
• Τα φυσικά μεγέθη να εκφράζονται σε “λογικές” μονάδες

Φυσική μονάδα μήκους: μήκος κύματος Compton: ħ /m0c =1

Φυσική μονάδα χρόνου: τ = ħ /m0c
2 =1

Φυσική μονάδα ενέργειας: Ε = m0c
2 =1

Μάζα πρωτονίου: 10-24 g → Ενέργεια ηρεμίας ≈1 GeV.
Άρα, αν πάρουμε ως ενέργεια αναφοράς το 1 GeV, όλα τα φυσικά μεγέθη
είναι ποσότητες κοντά στη μονάδα. 
Ηλεκτρόνιο: 2000 φορές πιο ελαφρύ → Ενέργεια ηρεμίας ≈ 0.5 MeV
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Τα διαγράμματα Feynman ως 
εργαλεία για τον υπολογισμό του 

χρόνου ζωής ενός σωματιδίου και 
της ενεργού διατομής μιας 

αλληλεπίδρασης σωματιδίων
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α. 
Ενεργός διατομή, χρόνος ζωής, 

ρυθμός αντίδρασης 
(αλληλεπιδράσεις και διασπάσεις)
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Ορισμός ενεργού διατομής, σ (από αλληλεπίδραση 1 + 1)

1) Αν έχουμε την αντίδραση ενός βλήματος με έναν στόχο:          α + Χ → οτιδήποτε ,       τότε:

2) Αν μια δέσμη σωματιδίων/βλημάτων α, που έχει ροή Φ σωματίδια ανά μονάδα επιφάνειας και ανά 
μονάδα χρόνου,  συγκρούεται με ΕΝΑ σωματίδιο στόχου, τύπου Χ , τότε:

 αν τα εισερχόμενα φωτίζουν μια επιφάνεια Α γύρω από το στόχο, σε χρόνο dt θα έχουν περάσει  Φ*Α*dt 
σωματίδια γύρω από το στόχο. 

και επειδή το καθένα από αυτά τα Ν βλήματα έχει πιθανότητα σ/Α να αλληλεπιδράσει με το στόχο, τότε σε 
χρόνο dt  ο αριθμός βλημάτων που θα αλληλεπιδράσουν με το στόχο, dΝ, είναι: dN = Φ*Α*dt*(σ/Α) = 
Φ*σ*dt → Αριθμός αλληλεπιδράσεων ανά  μονάδα χρόνου = dN/dt = σ * Φ

→ Αριθμός αλληλεπιδράσεων ανά μονάδα χρόνου = ρυθμός αλληλεπιδράσεων ( R ) = 

                                                   = σ * Φ   

Οπότε μπορούμε χρηστικά να ορίσουμε την ενεργό διατομή, σ, ως τη σταθερά αναλογίας (με μονάδες 
επιφάνειας) μεταξύ του ρυθμού αλληλεπιδράσεων  R(=dN/dt) και της ροής βλημάτων Φ. 

Έτσι, η ενεργός διατομή, σ,  ισούται με το ρυθμό αλληλεπιδράσεων ανά μονάδα ροής των προσπιπττων 
σωματιδίων και ανά σωματίδίο του στόχου ( σ = R/Φ ).

→ φυσικά η ενεργός διατομή έχει μονάδες επιφάνειας

(και μπορούμε να το κάνουμε αληθινές μονάδες επιφάνειας, ακόμα κι αν μας το δίνουν σε GeV -2, 
χρησιμοποιώντας ότι c=30cm/ns, και hbar * c = 197 MeV * fm )

Πιθανότητα αλληλεπίδρασης ενός βλήματος με ένα στόχο=
σ

επιφάνεια που φωτίζουν τα βλήματα
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Χρόνος ζωής (τ) και πλάτος ή εύρος (Γ) σωματιδίου, 
κάπως... ταχυδακτυλουργικά

Πεπερασμένος χρόνος ζωής ( τ ) σημαίνει αβεβαιότητα ( Γ ) στην τιμή της 
ενέργειας (μάζας) ενός σωματιδίου: 

 αρχής της αβεβαιότητας ΔΕ Δt=ħ , 

          όπου ΔΕ=(Δm)c2, και Δt=τ  →

• Η διασπορά στην κατανομή της μάζας του σωματιδίου είναι το        

“εύρος” του ( Γ ) και είναι μέτρηση του χρόνου ζωής του ( τ )
Αν βάλουμε hbar = 1 στον αριθμητή, τότε ο τύπος τ = hbar / Γ, δίνει τ = 1 / Γ, 

οπότε ο χρόνος ζωής τ θα βγεί σε μονάδες 1/GeV ή το εύρος Γ σε μονάδες 
1/sec. Μετά, χρησιμοποιώντας ότι c=30cm/ns, και hbar * c = 197 MeV * fm θα 
μπορώ εύκολα να δώσω το χρόνο σε σωστές μονάδες ( sec, λεπτά, ώρες, κλπ).

• Για σωματίδια που διασπώνται με τις ισχυρές αλληλεπιδράσεις τ ~ 10 - 2 3 s, που 
είναι περίπου όσο χρόνο χρειάζεται το φως για να διαπεράσει ένα αδρόνιο 
(διάμετρος ~1fm ~ 10 -1 5 m).  Δεν μπορεί όμως να μετρηθεί μια τροχιά ενός 
σωματιδίου με χρόνο ζωής 10- 2 3 s , γιατί διασπάται πολυ πριν διασχίσει κάποια 
παρατηρίσιμη απόσταση . 

– Οπότε, μετρώντας τα προϊόντα της διάσπασης και χρησιμοποιώντας τις αρχές 
διατήρησης ενέργειας και ορμής, κατασκευάζουμε τη  μάζα (ενέργεια) του 
διασπώμενου σωματιδίου, η οποία έχει μια κατανομή: από το εύρος της κατανομής 
αυτής μπορούμε να βρούμε το Γ 

1





τ=
ℏ

( Δm ) c2=
ℏ

Γ τ=
ℏ

Γ
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Σχόλιο 1: Σχέση εύρους (Γ) σωματιδίου και χρόνου ζωής (τ) (1/2)

Έστω ένα σωματίδιο με κυματοσυνάρτηση ψ(x,t).

Πιθανότητα εύρεσης του σωματιδίου ανά μονάδα όγκου  = |ψ|2 = ψ ψ* 

Για σωματίδιο ορμής p και ενέργειας Ε,  στη θέση x, τη χρονική στιγμή t: 

ψ(x,t) ~ ei(kx-ωt) =  ei(px-Et)/hbar ,  (αφού p = hbar * k και E = hbar * ω ) 

τότε:   |ψ|2 = ψ ψ* ~ ei(px-Et)/hbar  e-i(px-Et)/hbar = 1 →  ανεξάρτητο του χρόνου !

Δηλαδή, η πιθανότητα εύρεσης του σωματιδίου ανά μονάδα όγκου δεν 
αλλάζει ποτέ, δηλ, το σωματίδιο δεν διασπάται.

Εμείς όμως βλέπουμε διασπάσεις! 

και μάλιστα ακολουθούν το ραδιενεργό νόμο διάσπασης:  
– Αριθμός διασπάσεων ανά μονάδα χρόνου ~ e-λ t, 

με λ = 1/τ       , όπου τ = μέσος χρόνος ζωής 

→ Πώς γίνεται; 
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Σχόλιο 1: Σχέση εύρους (Γ) σωματιδίου και χρόνου ζωής (τ)  (2/2)

Πιθανότητα εύρεσης του σωματιδίου ανά μονάδα όγκου  = |ψ|2 = ψ ψ* 

Αν ψ ~ ei(kx-ωt) =  ei(px-Et)/hbar , πιθανότητα = σταθερή → δεν διασπάται.

Μπορεί όμως να διασπάται, 

αν η ενέργεια έχει και μιγαδική συνιστώσα, δηλ.   

Τότε:  

→  δηλ., η πιθανότητα εύρεσης του σωματιδίου τη στιγμή t  (= 
“επιβίωσης” του σωματιδίου μέχρι τότε) πέφτει εκθετικά με τον χρόνο!

Έστω ένας πληθυσμός Ν0 τέτοιων σωματιδίων τη στιγμή t=0. 

Μετά από χρόνο t θα έχουν επιβιώσει:    

( Νt = N0  * πιθανότητα επιβίωσης καθενός τους )

→ dN
d t

=−
Γ
ℏ

N 0 e
−

Γ
ℏ

t
=−

Γ
ℏ

N ( t ), και
dN /N

dt
=−

Γ
ℏ

 

Νόμος ραδιενεργών 
διασπάσεων !

1) Ρυθμός διασπάσεων 
πέφτει εκθετικά με το χρόνο
Και
2) Ποσοστό  διασπάσεων |dN/N|
ανά μονάδα χρόνου = σταθερό!

E→ER+i Γ
2

|ψ|2=ψ ψ*
=e

ipx−iE R t− Γ
2

t

ℏ e

−ipx+iE R t− Γ
2

t

ℏ =e
−

Γ
ℏ t

N t=N 0 e
−

Γ
ℏ

t

Γ
ℏ
=λ= 1

τ
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Σχόλιο 2: Γιατί το Γ είναι το “εύρος” του σωματιδίου; 
Τι σχέση έχει με το “παίξιμο” στην ενέργειά του; (1/2)

Για σωματίδιο ορμής p και ενέργειας Ε,  στη θέση x, τη χρονική στιγμή t: 

ψ(x,t) ~ ei(kx-ωt) = eikx e-iωt

 

Αλλά, το σωματίδιο δεν είναι και πήρως εντοπισμένο και με μία τιμή 
ενέργειας/ορμής → Δp *Δx >= hbar/2 

Ρεαλιστικά, όσον αφορά τη χρονική εξέλιξη, η κυματοσυνάρτηση του 
σωματιδίου είναι άθροισμα όρων e-iωt , καθένας με άλλο ω, δηλ. με άλλη 
ενέργεια E = hbar * ω. 

Κάθε τέτοιος όρος συμμετέχει στο άθροισμα με έναν συντελεστή  g(ω) , που 
είναι ο μετασχηματισμός Fourier  της ψ(t)  

ψ (x , t )=e

ipx−iER t− Γ
2

t

ℏ →ψ (t )=ψ (0)e

−(iE R+
Γ
2
) t

ℏ
E→ER+i Γ

2
, E
ℏ

→
ER

ℏ
+i Γ / ℏ

2
,ω=

E
ℏ

ψ (t)=ψ (0)∗Σ g(ω)e−i ω t , όπου g(ω)=∫
0

∞

ψ (t )eiωt dt=ψ (0)∫
0

∞

e

−(iE R+
Γ
2
) t

ℏ e
i

E
ℏ t

dt

οπότε , g(ω)=
σταθερά

(ER−E)−i
Γ
2
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Σχόλιο 2: Γιατί το Γ είναι το “εύρος” του σωματιδίου; 
Τι σχέση έχει με το “παίξιμο” στην ενέργειά του; (2/2)

ψ (t)=ψ (0)∗Σ g(ω)e−i ω t

|g(ω)|2= σταθερά

(ER−E)
2
+

Γ2

4

Πιθανότητα το σωματίδιο να έχει ενέργεια Ε  =  

, με : g(ω)=
σταθερά

(ER−E)−i
Γ
2

ER=mR c2

Έτσι, έχουμε ότι:
η ενέργεια (m c2) ενός σωματιδίου με 
πεπερασμένο χρόνο ζωής τ, 
“παίζει” γύρω από μια μέση τιμή, 
η οποία είναι και η πιο πιθανή τιμή.

Το δε  “εύρος” / “παίξιμο” είναι ίσο με Γ,
που είναι ίσο με το 
“πλήρες πλάτος στο μισό του ύψους” 
=  Full Width at Half Maximum = FWHM.
Το Γ συνδέεται με το μέσο χρόνο ζωής με:

(που θυμίζει την αβεβαιότητα:                      )

Γ
ℏ

=
1
τ
→Γ τ=ℏ

ΔΕ Δt≥ℏ/2

0.5 -
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Ρυθμός διασπάσεων ή αλληλεπιδράσεων και σχέση με χρόνος ζωής (τ) 
και εύρος (Γ) σωματίου, ή με την ενεργό διατομή αλληλεπίδρασης (σ)

Έτσι:

α) Στις συγκρούσεις έχουμε ότι ο ρυθμός αλληλεπιδράσεων είναι 
ανάλογος της ενεργού διατομής, σ. Οπότε αν ξέρουμε το σ (και τη ροή Φ, 
και τον αριθμό στόχων Ν), βρίσκουμε το ρυθμό αλληλεπιδράσεων. 

β) Στις διασπάσεις έχουμε  ότι ο ρυθμός διασπάσεων είναι ανάλογος του 
εύρους, Γ. Οπότε αν ξέρουμε το Γ μπορούμε να βρούμε το ρυθμό 
διασπάσεων, δηλαλή το χρόνο ζωής, τ, του διασπώμενου σωματιδίου

Διασπάσεις: 1/τ = “1 διάσπαση ανά έναν χρόνο ζωής κατά μέσο όρο” = 
= ρυθμός διασπάσεων ενός σωματιδίου 
Επειδή με hbar=1 γράφω 1/τ = Γ, λέω ότι ο ρυθμός διάσπασης είναι ανάλογος του Γ. 

Σκεδάσεις: Ρυθμός αλληλεπιδράσεων = Ν * σ * Φ , 
όπου Ν = αριθμός στόχων και Φ = ροή βλημάτων 
(Φ = αριθμός βλημάτων ανά μονάδα χρόνου και μονάδα επιφάνειας)
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β. 
Pυθμός αντίδρασης 

(αλληλεπιδράσεις και διασπάσεις) 
από χρυσό κανόνα Fermi
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Υπολογισμός τάξης μεγέθους ενεργών διατομών (σ) και χρόνων ζωής (τ) με 
χρήση στοιχείων από το “χρυσό κανόνα του Fermi”

Χρυσός Κανόνας του Fermi: 

Ρυθμός αντίδρασης (δηλ.διάσπασης ή  σύγκρουσης) = 
|”Στοιχείο Πίνακα”|2  * (πυκνότητα καταστάσεων στο “χώρο των φάσεων”)

= |”Μatrix Element”|2 * (συνάρτηση της διαθέσιμης ενέργειας, E, για τα 
προϊόντα της αντίδρασης) 

=> Ρυθμός αντίδρασης ~ |Μ|2 * ρ(Ε)

Διασπάσεις: Ρυθμός διασπάσεων = 1 σωματίδιο ανά χρόνο τ = 1/τ = Γ , όταν έχουμε 
ένα σωματίδιο.

Σκεδάσεις:  Ρυθμός αντιδράσεων με έναν στόχο = ροή βλημάτων * σ = σ , όταν ροή 
βλημάτων = 1 και προσπίπτουν σε έναν στόχο. 

Άρα:

Διασπάσεις: Γ ~ (Matrix Element)2  * (Παράγοντας Χώρου Φάσεων)

Σκεδάσεις:   σ ~ (Matrix Element)2  * (Παράγοντας Χώρου Φάσεων)
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Υπολογισμός τάξης μεγέθους ενεργών διατομών (σ) και χρόνων ζωής (τ) με 
χρήση στοιχείων από το “χρυσό κανόνα του Fermi”

Χρυσός Κανόνας του Fermi: 

Ρυθμός αντίδρασης (δηλ.διάσπασης ή  σύγκρουσης) = 
|Στοιχείο Πίνακα|2  * (πυκνότητα καταστάσεων στο χώρο των φάσεων)

= |Μatrix Element|2 * (συνάρτηση της διαθέσιμης ενέργειας, E, για τα 
προϊόντα της αντίδρασης) 

=> Ρυθμός αντίδρασης ~ |Μ|2 * ρ(Ε)

Διασπάσεις: Γ ~ (Matrix Element)2  * (Παράγοντας Χώρου Φάσεων)

Σκεδάσεις:   σ ~ (Matrix Element)2  * (Παράγοντας Χώρου Φάσεων)

Περιγράφει πώς η αλληλεπίδραση 

φέρνει το σύστημα από την αρχική στην 

τελική κατάσταση: ποιός έιναι ο διαδότης,

πόση τετραορμή έχει, με πόση “ισχύ” 

συζεύγνεται με τα αντιδρώντα και 

προϊόντα σωματίδια

Περιγράφει τον αριθμό διαθέσιμων
καταστάσεων για τα προϊόντα, 
συναρτήσει της ενέργειας που 
έχουν διαθέσιμη τα προϊόντα
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Υπολογισμός τάξης μεγέθους ενεργών διατομών (σ) και χρόνων ζωής (τ) με 
χρήση στοιχείων από το “χρυσό κανόνα του Fermi”

Χρυσός Κανόνας του Fermi: 

Ρυθμός αντίδρασης (δηλ.διάσπασης ή  σύγκρουσης) = 
|Στοιχείο Πίνακα|2  * (πυκνότητα καταστάσεων στο χώρο των φάσεων)

= |Μatrix Element|2 * (συνάρτηση της διαθέσιμης ενέργειας, E, για τα 
προϊόντα της αντίδρασης) 

=> Ρυθμός αντίδρασης ~ |Μ|2 * ρ(Ε)

Διασπάσεις: Γ ~ (Matrix Element)2  * (Παράγοντας Χώρου Φάσεων)

Σκεδάσεις:   σ ~ (Matrix Element)2  * (Παράγοντας Χώρου Φάσεων)

*** Όταν υπάρχει διαθέσιμη ενέργεια, δηλ. το Q της αντίδρασης είναι >0 , τότε η αντίδραση 
γίνεται, και μάλιστα ο παράγοντας του χώρου των φάσεων, ρ(Ε), μεγαλώνει με το Q

*** Αν Q<0, τότε ΔΕΝ γίνεται η αντίδραση (από απλή διατήρηση ενέργειας) → ρ(Ε) = 0 και έτσι 
Ρυθμός =0

Θα δούμε τώρα κάποια συστατικά του Matrix Element, και μετά για ρ(Ε) θα βάζουμε τη σωστή 
δύναμη του E ώστε διαστατικά να βρίσκουμε σωστά τις διστάσεις του σ ή του Γ
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γ. 
Pυθμός αντίδρασης, 

Στοιχείο Πίνακα, 
σταθερές σύζευξης στα διαγράμματα 

Feynman,
και σύγκριση ενεργών διατομών και 

χρόνων ζωής για διάφορες 
αντιδράσεις
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Μ= f ( q)=
g1 g2

q2
−m2

Δύο βασικά στοιχεία στο Στοιχείο Πίνακα, Μ: η ισχύς 
σύζευξης και ο μποζονικός διαδότης

 e- e-

 

 e-
 e-

 q, m

 P
1  P

2 g
1

• Μεταφορά Ενέργειας & ορμής (τετρα-ορμής): q=P
1
-P

2    

όπου P
1
 = τετρα-ορμή = {Ε,p

x
,p

y
,p

z
} του σωματιδίου #1, 

κλπ.

    q2 = E2 – (p
x

2 + p
y

2 +  p
z

2) = E2 – p2

  “Στοιχείο Πίνακα” M ή “πλάτος σκέδασης” f(q):

  περιγράφει τη μετάβαση από

 την αρχική στην τελική κατάσταση

•->  g
1
,g

2
 η ισχύς της σύζευξης του διαδότη με τα σκεδαζόμενα σωμάτια 

σε κάθε κόμβο. Γενικά, τα g
1
,g

2
 μπορεί να είναι διαφορετικά. Συνήθως, 

όπως στο διπλανό διάγραμμα, έχουμε: g
1
=g

2
( = g)

-> q2 - m2 = πόση διαφορά έχει η μάζα2 του διαδότη στην αλληλεπίδραση 
αυτή  (q2), από τη “φυσιολογική” τιμή της μάζας2 του διαδότη (m2). 
(q=τετρα-ορμή  και m=μάζα του διαδότη)

 g
2

γ
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Ρυθμός αλληλεπιδράσεων, στοιχείο πίνακα Μ, και 
σταθερά σύζευξης g

 
• Pυθμός αλληλεπιδράσεων: αριθμός μεταβάσεων από την αρχική στην τελική 
κατάσταση  ανά μονάδα χρόνου. 

• Ο ρυθμός εξαρτάται από το τετράγωνο του μέτρου του στοιχείου πίνακα Μ της 
μετάβασης:  |M|2

• Σκεδάσεις σωματιδίων: ο ρυθμός αλληλεπιδράσεων είναι  ανάλογος της ενεργού 
διατομής (σ) της αλληλεπίδρασης 

• Διασπάσεις σωματιδίου με μέσο χρόνο ζωής τ  και πλάτος Γ:    
ρυθμός διασπάσεων = 1/τ  = Γ/ ħ = Γ (για hbar =1)

 

•Οπότε: σ ~ |M|2  ~ g4   και  Γ ~ |M|2 ~ g4

M= f ( q)=
g1 g2

q2
−m2 =

g2

q2
−m2

∣M∣
2
~∣ g2

q2
−m2∣

2

θυμηθήτε : Γ τ=ℏ→τ=
ℏ

Γ
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Ηλεκτρομαγνητικές Αλληλεπιδράσεις
H σταθερά σύζευξης σε κάθε κόμβο των διαγραμμάτων Feynman είναι √α

Σταθερά λεπτής υφής: α

α=

e2

4π ε 0(
ℏ

mc )
mc2

=
e2

4π ε 0 ℏ c
=

1
137

α=
e2

4π ε0 ℏ c
=(με 4π ε0=1 και ℏ c=1)→√a=e

Θα χρησιμοποιούμε παντού: 
MeV για ενέργεια, 
1/4πε

0
 = 1 σε όλους τους τύπους,

και θα βάζουμε:
e2

4 π ε 0

=e2=α ℏ c,  όπου  α=1 /137
ℏ c=197 MeV fm
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Ηλεκτρομαγνητικές Αλληλεπιδράσεις

Η ισχύς της αλληλεπίδρασης μεταξύ φορτισμένων 
σωματίων και φωτονίων είναι όσο το φορτίο του 
ηλεκτρονίου: g = e ~ sqrt(α) :
     (η σταθερά της λεπτής υφής α)

Σε κάθε κόμβο, ισχύς σύζευξης ~

Πιθανότητα σύζευξης ~ α

Φωτοηλεκτρικό φαινόμενο : 
πλάτος της αλληλεπίδρασης ~√α 
=> ενεργός διατομή: ~ α   (1ης τάξης)

Σκέδαση Coulomb: 
πλάτος της αλληλεπίδρασης ~ α 
=> ενεργός διατομή: ~ α2 (2ης τάξης)

φωτοηλεκτρικό

Σκέδαση Rutherford

√α

√α

√α

 α
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Άσκηση 1
Ποιά απ'τις 2 εκδοχές είναι η πιθανότερη να γίνει; Κατά πόσο 

σε σχέση με την άλλη;
Διαφορά στην πιθανότητα να συμβούν οι δύο αυτές εκδοχές:

 α

e- e-

e+e+

 α ενεργός διατομή σ ~ α2

 α

e- e-

e+e+

 α ενεργός διατομή σ ~ α3

γ

γ

γ

e e−
 ee−

e e−
 ee−γ

Το πάνω είναι πιθανότερο 
(κατά 1/α = 137 πιθανότερο: 

κάθε εκπομπή φωτονίου 
κοστίζει έναν παράγοντα 

1/α=137 μείωση στην 
πιθανότητα )  α
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Οι διαδότες των ασθενών δυνάμεων

• Τα μποζόνια βαθμίδας (gauge bosons): W+, W-, Z0

• Με μάζες :  W+, W- : 80 GeV/c2,                     
   Z0 : 90 GeV/c2

Ηλεκτρομαγνητικές Δυνάμεις

• κόμβος (διάγραμμα Feynman)

• Σταθερά Σύζευξης 

α  = e2,

Ασθενείς Δυνάμεις

•κόμβος (διάγραμμα Feynman)

• Σταθερά Σύζευξης

aw = g2,

γ(q)
W,Z (m,q)

f (q )=
√α √α

q2 f (q )=
g2

q2
−m2

Στοιχείο Πίνακα, Μ = Στοιχείο Πίνακα, Μ =
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Ασθενείς Αλληλεπιδράσεις
H σταθερά σύζευξης σε κάθε κόμβο είναι παρόμοια με του φωτονίου, αλλά ο όρος του 

διαδότη δίνει έναν τεράστιο παρονομαστή στο Matrix Element

Η ασθενής σύζευξη εμφανίζεται με σταθερά G (τη σταθερά Fermi) που 
έχει μέσα και τη σύζευξη στους κόμβους και τον διαδότη: οπότε η 
σταθερά  G είναι μικρότερη από την e2 του ηλεκτρομαγνητισμού κατά 
M2

W,Z 
λόγω της μάζας του διαδότη W ή Ζ

f (q )=
g2

q2
−Μ W , Z

2
Για q2

→ 0:∣f (q )∣=∣ g2

Μ W , Z
2 ∣=G≃10−5GeV −2

Μ W , Z=
g

√G
=

√α

√G
=√

α
G

≃90 GeV

Στην ενοποιημένη θεωρία των ηλεκτρομαγμητικών και των ασθενών δυνάμεων
(την “ηλεκτρασθενή θεωρία” των Weinberg, Salam και Glasgow, 1968) 
προτάθηκε η σταθερά της σύζευξης (g) των W και Ζ με τα λεπτόνια
και τα κουάρκ, να ειναι σχεδόν ίση με την ηλεκτρομαγητική σύζευξη  του 
φωτονίου με ηλεκτρόνια (e). Οπότε g = sqrt(αweak) ~ sqrt(αΗ/Μ) = sqrt(α) = e 

Γνωρίζοντας τη σταθερά του Fermi, G (από διάφορες μετρήσεις χρόνων ζωής
π.χ., στο χρόνο ζωής του μιονίου), με χρήση του χρυσού κανόνα του Fermi 
περιμένουμε:

όπως και βρέθηκε
στο CERN το 1983!
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Ασθενείς Αλληλεπιδράσεις
• Κουάρκς και λεπτόνια φέρουν ‘ασθενές’ φορτίο . 
• Τα νετρίνο έχουν μόνο ασθενές φορτίο: ΔΕΝ έχουν ούτε ‘ισχυρό’, ούτε 

ηλεκτρομαγνητικό φορτίο

• Οι ασθενείς δυνάμεις είναι 103-105 φορές ‘ασθενέστερες’ από τις 
ηλεκτρομαγνητικές → μικρότερη ισχύ σύζευξης → μικρότερος ρυθμός μετάβασης 
από την αρχική στην τελική κατάσταση (= μικρότερη πιθανότητα μετάβασης ανά 
μονάδα χρόνου) 

• Οι μόνες που μπορούν να παραβιάζουν τις γεύσεις ΔC, ΔS≠0 (κυρίως μέχρι ΔC, ΔS = 
+-1. Μεγαλύτερη μεταβολή είναι απίθανη)

• Περιλαμβάνουν είτε μόνο κουάρκς ή κουάρκς και λεπτόνια

• Παραδείγματα:  διάσπαση νετρονίου, 

σκέδαση αντινετρίνο-πρωτονίου

  Σ- →  n + π-   (τ ≈ 10-10 sec) →  ασθενής (ΔS=1)

  Σ0 →  Λ + γ   (τ ≈ 10-19 sec) → ηλεκτρομαγνητική Βλέπω γ, οπότε Η/Μ

Βλέπω καθαρή 
δημιουργία νέας “γεύσης” 
κουάρκ: μόνο η ασθενής 
το κάνει αυτό.
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Χρόνος ζωής (τ), εύρος (Γ) σωματίου και σταθερές σύζευξης των 
διαφόρων αλληλεπιδράσεων

Γ = 1/τ = 1 διάσπαση ανά έναν χρόνο ζωής = ρυθμός διασπάσεων: 

1
τ

=Γ ~ a2

Για τις διασπάσεις που γίνονται με την ασθενή αλληλεπίδραση,  μπορούμε 

να βάζουμε κατ’ ευθείαν Γ ~ G2 
→ το G είναι μια σταθερά με μονάδες [Ε]-2 γιατί περιέχει και τη σύζευξη 
στους κόμβους του διαγράμματος Feynman (που είναι αδιάστατη) και τον 
παρονομαστή Mw

2 από τον διαδότη W  : 

G = aw
2 / Mw

2

Άρα, όπως και η ενεργός διατομή (που είναι μέτρο 

της πιθανότητας να γίνει μιά σκέδαση ή εξαύλωση), 

έτσι και το Γ είναι ανάλογο του “α”2 
(όπου η σταθερά σύζευξης “α” είναι = α  ή  α

W
  ή  α

s
  ,

ανάλογα αν η αλληλεπίδραση είναι 
ηλεκτρομαγνητική,  ασθενής ή ισχυρή, αντίστοιχα)    
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Άσκηση 2 
Συγκρίνετε τις σταθερές σύζευξης για τις εξής διασπάσεις

   

    1) Σ0 → Λ0 + π0                     τ = 10- 2 3 sec  

2) Σ0 -> Λ0 + γ                     τ = 10-19 sec

3) Σ- →  n + π-                                        (τ ≈ 10-10 sec)

=> σημειώσεις στοιχειωδών, παράγραφος 1.8. 

1) Τόσο μικροί 
χρόνοι, 
σημαίνει πολύ 
‘εύκολη’/πιθανή
μετάβαση → 
υπεύθυνη 
είναι η ισχυρή 
αλληλεπίδραση

3) Τόσο πολύ 
μεγαλύτεροι 
χρόνοι από την 
περίπτωση των 
ισχυρών σημαίνει 
πολύ 
‘δύσκολη’/απίθανη
μετάβαση → 
υπεύθυνη 
είναι η ασθενής 
αλληλεπίδραση

2) Χρόνοι 
ανάμεσα  στην 
περίπτωση των 
ισχυρών (~10-23) 
και των ασθενών 
(~10-10) 
 → υπεύθυνη 
είναι η 
ηλεκτρομαγνητική 
αλληλεπίδραση
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Άσκηση 2 – λύση 
και Ισχυρές Αλληλεπιδράσεις

• Οι ισχυρές αλληλεπιδράσεις συμβαίνουν μεταξύ κουάρκ

1) Σ0 → Λ0 + π0 τ = ћ/Γ → 10-23  sec

  2) Σ0 -> Λ0 + γ  , τ = 10-19 sec

 ћ/τ = Γ ~ α2      →    Γ1/ Γ2 = (α1 / α2)2    →   τ2/ τ1 = (α1 / α2)2 

Από τους χρόνους ζωής καταλαβαίνω ότι: 

α1 = αstrong = αs   , και α2 = αηλεκτρομαγνητικό = α

(αs / α) = ( 10-19 / 10-23)1 / 2 ≈ 100 

Όπου : αs = g2
s/4πћc  , gs  είναι το αντίστοιχο φορτίο για τις ισχυρές αλληλεπιδράσεις:  

χρώμα <=> ισχυρό φορτίο

Κουάρκ : Red, Green, Blue (R, G, B)

Αντικουάρκ: anti-Red, anti-Green, anti-Blue : R(bar), G(bar), B(bar)
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Βασικά χαρακτηριστικά των δυνάμεων

Ισχυρή Ασθενής Ηλεκτρο-
μαγνητική

Βαρυτική

Σταθερά 
σύζευξης

as=0.1-1 G = GF=10-5 

GeV-2

a= 1/137 KM2/ћc=
0.5x10-3 8

Τυπική 
ενεργός 
διατομή

10 mb 10 pb 10-2 mb

Τυπικός 
χρόνος ζωής 
(sec)

10-2 3 10-1 0 – 10-8

(στις ασθενείς υπάρχουν 

μεγάλες διαφοροποιήσεις 

στους χρόνους ζωής)

10-20

Ο χρόνος ζωής είναι ένδειξη για το ποιά αλληλεπίδραση είναι υπεύθυνη για τη 
διάσπαση, και τι “α” (σταθερά σύζευξης) έχει αυτή η αλληλεπίδραση. Να έχετε υπ' 
όψιν σας αυτές τις τάξεις μεγέθους.
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Άσκηση 3: σ(e+ e- → μ+ μ-) 
Γράψτε την εξάρτηση της ενεργού διατομής από τη σταθερά σύζευξης και τη ενέργεια της 

σύγκρουσης στο κέντρο μάζας για την αλληλεπίδραση εξαΰλωσης e+ e- και δημιουργίας μ+ μ- :  e+ 
e- → γ → μ+ μ-

σ(e+ e- → μ+ μ-) ~ |Μ|2 * ρ(Ε) = (α/q2)2 * Ecm
k  = (α/Ecm

2)2 * Ecm
k = α2 * Ecm

-2

Το α είναι αδιάστατο και το α2 είναι από τους 2 κόμβους στο διάγραμμα Feynman. To q2  = (Pe- + 

Pe+ )2  = (Ολική ενέργεια)2  - (Ολική ορμή)2 = Ecm
2  , γιατί η ολική ορμή είναι μηδέν στο σύστημα του 

κέντρου μάζας. 

Η δύναμη στην ενέργεια σύγκρουσης στο κέντρο μάζας, Εcm (που είναι η ενέργεια που είναι 
διαθέσιμη στα προϊόντα όταν θεωρούμε τις μάζες πολύ μικρές) είναι “-2”, 

γιατί:

[Ενεργός Διατομή]= [Επιφάνεια] = [Ε]-2

Αφού E * t = hbar = 1 , έχουμε ότι:  [t] =  1 / [Ε]

και αφού c = 1 , έχουμει ότι: [Μήκος] = [Χρόνος] = 1 / [Ε]

 α
e- e-

e+e+

α

γ
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Άσκηση 4: Γ ( τ- → μ- ν ν) 
Γράψτε το είδος των νετρίνων, φτιάξτε το διάγραμμα Feynman, και βρείτε την 

εξάρτηση του ρυθμού διάσπασης Γ από τη σταθερά σύζευξης και τη 
διάσοπαση του ταυ σε μιόνο, αν θεωρήσετε τις μάζες των προϊόντων 

αμελητέες

Γ( τ- → μ- ν ν) ~ |Μ|2 * ρ(Ε) ~ (αw / Mw
2)2  * mτ

5 ~ G2   * mτ
5   

Το αw είναι αδιάστατο,αλλά στις ασθενείς έρxεται μαζί με το Mw
2 στον 

παρονομαστή στον όρο του διαδότη. Είναι αw
2 από τους 2 κόμβους στο 

διάγραμμα Feynman.  

Το G = αw / Mw
2 είναι η σταθερά Fermi που έχει διαστάσεις [Ε]-2 . Οποτε η 

δύναμη στη μάζα του ταυ (που είναι η ενέργεια που είναι διαθέσιμη στα 
προϊόντα όταν θεωρούμε τις μάζες τους πολύ μικρές) είναι “5”, 

γιατί:

[Εύρος σωματιδίου, Γ]= [Ε]
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